Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Rev. Assoc. Med. Bras. (1992) ; 56(4): 484-488, 2010.
Article in Portuguese | LILACS | ID: lil-557332

ABSTRACT

Evidências têm demonstrado que distúrbios do metabolismo são comuns em células tumorais, levando ao aumento do estresse oxidativo. A elevação na produção de espécies reativas de oxigênio (EROs) associada à baixa atividade antioxidante tem sido relacionada a vários tipos de câncer. O selênio, micronutriente antioxidante, pode funcionar como um agente antimutagênico, prevenindo transformações malignas de células normais. Realizou-se um levantamento bibliográfico no período 2000 a 2009 mediante consulta à base de dados PubMed (National Library of Medicine´s Medline Biomedical Literature, USA), selecionando-se 39 artigos que avaliaram a relação entre câncer, estresse oxidativo e suplementação com selênio. O efeito protetor desse mineral é especialmente associado à sua presença na glutationa peroxidase e na tioredoxina redutase, enzimas protetoras do DNA e outros componentes celulares contra o dano oxidativo causado pelas EROs. Vários estudos têm demonstrado a expressão reduzida destas enzimas em diversos tipos de câncer, principalmente quando associados a uma baixa ingestão de selênio, que pode acentuar os danos causados. A suplementação de selênio parece ocasionar redução do risco de alguns tipos de câncer diminuindo o estresse oxidativo e o dano ao DNA. No entanto, mais estudos são necessários para esclarecer as doses de selênio adequadas para cada situação (sexo, localização geográfica e tipo de câncer).


There are evidences that metabolic disorders are common in tumoral cells, leading to increased oxidative stress. The rising in the production of reactive oxygen species associated to low antioxidant activity have been associated to different types of cancer. Selenium, an antioxidant micronutrient can work as an anti-cancer agent preventing malignant modification in healthy cells. A literature review was carried out in the period 2000-2009 in the database PubMed selecting 39 articles which assessed the relationship between cancer, oxidative stress, and supplementation with selenium. The protective effect of selenium is specially associated to the presence of glutathione peroxidase and of thioredoxin reductase enzymes and with other cell components which protect the tissues against the oxidative damage caused by reactive oxygen species - ROS. Several studies have shown a decrease of these enzymes in many types of cancer, mainly when associated with low selenium consumption, increasing the damage caused by ROS. Selenium supplementation seems to reduce the risk of some types of cancer by stress oxidative reduction and by limiting the damage to DNA. Nevertheless, more studies are necessary to clarify the adequate selenium doses in each situation (gender, geographic localization and type of cancer).


Subject(s)
Humans , Antioxidants/administration & dosage , Neoplasms/metabolism , Selenium/administration & dosage , Selenoproteins/physiology , DNA Damage , Glutathione Peroxidase/metabolism , Neoplasms/enzymology , Neoplasms/prevention & control , Oxidative Stress/physiology , Reactive Oxygen Species/metabolism , Thioredoxin-Disulfide Reductase/metabolism
2.
Experimental & Molecular Medicine ; : 497-506, 2005.
Article in English | WPRIM | ID: wpr-207069

ABSTRACT

Reactive oxygen species (ROS) are involved in a diversity of important phenomena in the process of tumor development. To investigate the alterations of oxidative stress and their related systems in tumor progression, a variety of components in the antioxidative stress defense system were examined in prostate cancer cell lines, PC3 and LNCaP. Cell surface molecules involved in metastasis were expressed highly in PC3 cells compared with LNCaP cells, and strong invasion ability was shown in PC3 cells only. ROS level in LNCaP cells was twice higher than that in PC3 cells, although nitric oxide (NO) level was similar between the two cell lines. The content of GSH increased up to about 2-fold in PC3 compared with LNCaP. Activities of glutathione reductase, thioredoxin reductase, and glutathione S-transferase except catalase are significantly higher in PC3 cells than in LNCaP cells. Furthermore, oxidative stress-inducing agents caused down-regulation of GSH and glutathione S-transferase much more significantly in LNCaP cells than in PC3 cells. These results imply that malignant tumor cells may maintain low ROS content by preserving relatively high anti-oxidative capacity, even in the presence of stressful agents.


Subject(s)
Humans , Male , Antioxidants/metabolism , Cell Line, Tumor , Enzyme Induction , Gene Expression Regulation, Neoplastic , Oxidative Stress , Prostatic Neoplasms/enzymology , Reactive Oxygen Species/metabolism , Thioredoxin-Disulfide Reductase/metabolism , Up-Regulation/genetics
3.
Yonsei Medical Journal ; : 263-272, 2004.
Article in English | WPRIM | ID: wpr-51752

ABSTRACT

Thioredoxin reductase (TrxR), a component of the thioredoxin system, including thioredoxin (Trx) and NADPH, catalyzes the transfer of electrons from NADPH to Trx, acts as a reductant of disulfide-containing proteins and participates in the defense system against oxidative stresses. In this study, the regulation pattern of TrxR in the presence of various stressful reagents was compared between Chang (human normal hepatic cell) and HepG2 (human hepatoma cell) cell lines. Aluminum chloride (0.5 mM) and zinc chloride (0.5 mM) enhanced the TrxR activity in the Chang cell line to a higher degree than in the HepG2 cell line, but cupric chloride (0.2 mM) and cadmium chloride (0.1 mM) enhanced the TrxR activity in the HepG2 cell line to a greater degree. The TrxR activities in both Chang and HepG2 cell lines were similarly induced by treatment with sodium selenite (0.02 mM) and menadione (0.5 and 1.0 mM). Lipopolysaccharide (2microgram/m1) increased the TrxR activity upto 4.02- and 2.2-fold in the Chang and HepG2 cell lines, respectively, in time-dependent manners. Hydrogen peroxide (5 mM) markedly enhanced the TrxR activity in the HepG2 cell line, but not in the Chang cell line. NO-generating sodium nitroprusside (3.0 and 6.0 mM) induced TrxR activities in both human liver cell lines. The TrxR activity was also induced in human liver cells under limited growth conditions by serum deprivation. These results imply that the TrxR activities in normal hepatic and hepatoma cell lines are subject to different regulatory responses to various stresses.


Subject(s)
Humans , Cell Line, Tumor , Comparative Study , Hepatocytes/cytology , Oxidative Stress/physiology , Thioredoxin-Disulfide Reductase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL